Тестирование волоконно-оптических каналов СКС

Евгений Запорощенко, к.т.н., доцент

 

Потребность в быстрой передаче больших объемов данных привела к росту популярнос­ти высокоскоростных сетей Gigabit Ethernet и их распространению в LAN-сетях. В активном сете­вом оборудовании 1 и 10 Gigabit Ethernet, включая маршрутизаторы и коммутаторы, в качестве источников излучения используются не светодиоды, а лазерные диоды.

Какой источник излучения должен использоваться в измери­тельном оборудовании, когда для передачи данных используются и светодиоды, и лазе­ры? Рассмотрим этот вопрос подробнее.

В высокоскоростных сетях на основе одномодового волокна применяются полупроводнико­вые лазеры различных конструкций. В LAN-сетях обычно используют лазеры Фабри - Пе­ро, излучающие на длине волны 1310 или 1550 нм. Для измерения потерь оптического сигнала в одномодовом волокне следует ис­пользовать приборы с аналогичными лазерны­ми источниками излучения. В этом случае ха­рактеристики источника излучения, используе­мого в тестирующем оборудовании, будут сов­падать с характеристиками реального источ­ника излучения, используемого в активном се­тевом оборудовании, а измеренная величина потерь будет очень близка к реальной величи­не потерь сигнала при работе сети.

С тестированием кабельной инфраструкту­ры сетей на основе многомодового волокна ситуация несколько сложнее. В таких сетях могут применяться как светодиодные, так и лазерные источники излучения. В активном сетевом оборудовании, рас­считанном на 10- и 100-мегабитный Ethernet, применяются светодиоды. В то же время для передачи данных со скоростью 1 и 10 Гбит/с нужны лазерные источники оп­тического сигнала. Наиболее часто для пе­редачи данных по многомодовому волокну используются VCSEL-лазеры (Vertical Cavity Surface Emitting Laser, лазер поверхностного излучения с вертикальным резонатором). Лазеры VCSEL излучают на длине волны 850 нм, они пригодны для высокоскорост­ной передачи данных и стоят значительно дешевле лазеров Фабри - Перо. Хотя рабочие длины волн светодиодов и VCSEL-лазеров совпадают, пространствен­ные характеристики их излучения значитель­но отличаются (также отличаются и спект­ральные характеристики). На практике это означает, что они обес­печивают разные условия ввода излучения в волокно. Светодиод сравнительно равномер­но заполняет излучением всю сердцевину и угло­вую апертуру многомодового волокна. Лазе­ры VCSEL излучают узконаправленным пучком с меньшей расходимостью и более высокой яркостью. Пучок излучения сосредоточен бли­же к центру волокна, его интенсивность быстро уменьшается по мере удаления от центра; внешняя часть сердцевины волокна, прилегающая к его оболочке, практически не освещается (т.е. лазером в многомодовом волокне возбуждается малая группа мод). Разные условия ввода светового пучка приводят к разной ве­личине измеренного значения затухания. Как правило, затухание, измеренное с использова­нием светодиода, выше изме­ренного с использованием VCSEL-лазеров. Этот фактор способен повлиять на заключение о работоспособности сети в условиях, когда к допустимому оптическому бюджету потерь предъявляются жесткие требования.

 

1. Выбор источника излучения для сертификации волоконно-оптических каналов

При сертификации ВОЛС стандарты TIA и ISO требуют проверки полярности волокон и изме­рения величины потерь сигнала в каждом волокне на двух стандартных длинах волн. (Гори­зонтальную разводку длиной до 100 м доста­точно протестировать на одной длине волны.) Стандарт TIA-568-B.1 ссылается на стандарт TIA 526-14 «Измерение потерь оптической мощности в кабелях на основе многомодово-го волокна» (Optical Loss Measurement of Installed Multimode Fiber Cable Plant), OFSTP-14. В приложении А к последнему стандарту дается определение CPR-источника излу­чения.

Coupled-power ratio (CPR) - это качественное из­мерение, которое обычно используется для описа­ния распределения мощности оптического сигна­ла по модам (Mode-Power Distribution (MPD)) при его распространении в многомодовом кабеле. CPR - это отношение полной мощности на выходе из многомодового кабеля к мощности сигнала на выходе одномодового кабеля, который подключен к многомодовому кабелю. В русском языке пока нет устоявшегося тер­мина для CPR.

В стандарте опи­сан метод измерения CPR-источников сигна­ла, а сами источники разделены в зависимос­ти от величины CPR на пять категорий (по возрастанию CPR) - с 1-й по 5-ю. Как прави­ло, светодиоды относятся к источникам излу­чения категории 1, а лазеры Фабри - Перо - к источникам категории 5. Источникам излуче­ния посвящен раздел 3 стандарта TIA-526-14. В отношении выбора источника излучения в тестовом оборудовании стандарт дает сле­дующую рекомендацию:

«Если в соответствующем документе тип источника не оговорен особо, следует пользоваться источниками излучения категории 1, что должно быть отражено в отчете согласно пункту 7.1.3. При использовании источников категории 1 измеренные значения затуха­ния максимальны и представляют наиболее пессимистичные результаты». Промышленные стандарты на структуриро­ванные кабельные системы описывают и определяют только тип кабеля. В них не делается никаких предположений относительно способа его подключения и прокладки. Как уже было сказано, в кабеле на основе многомодового волокна затуха­ние сигнала максимально для светодиодных источников (категория 1). Поэтому, если на процедуры сертификации и измерения ве­личины затухания не наложены ограниче­ния на применение тех или иных источников излучения, рекомендуется использовать светодиодные источники в целях получения самых пессимистичных оценок. Однако в большинстве случаев владелец сети знает и представляет, для каких приложений создается кабельная инфраструктура. Напри­мер, если требуется поддержка работы Gigabit Ethernet, то измерения величины потерь лучше проводить с использованием тех же источников излучения, что будут работать в дальнейшем в активном сетевом оборудовании (маршрутиза­торах, коммутаторах, серверах и т.п.). В слу­чае Gigabit Ethernet их можно использовать в том случае, если существует не­обходимая информация о буду­щем использовании сети. И главное, если тестирование про­ведено с использованием источни­ка, не относящегося к категории 1, то это должно быть специально оговорено в соответствующей до­кументации .

 

2. Требования сетевых приложений

В спецификациях приложений всег­да имеются в виду соединения «точ­ка-точка», которые в TIA и ISO на­зываются «каналами». Если кабель устанавливается или тестируется по сегментам, то для обеспечения нор­мальной работоспособности прило­жений нужно позаботиться о том, чтобы суммарные потери и длина волокна в каждом канале не превышали максимально допустимого значения.

Далее, в таблице 4, приведены сведения о максимальной рекомендуемой длине кабеля и максимально допустимых потерях сигнала для различных приложений. Наиболее стро­гие требования предъявляются к высокопроиз­водительным гигабитным се­тям. Ограничения на потери сигнала в техноло­гии Gigabit Ethernet близки к установленным в стандартах TIA и ISO значениям потерь для структурированных кабельных систем. Требования, предъявляемые ранними сете­выми технологиями на величину потерь, значительно мягче. Физическая среда пере­дачи данных не будет отрицательно сказы­ваться на производительности приложений, пока требования приложений не превосхо­дят спецификаций стандартов TIA и ISO.

Таблица 4 Требования приложений с учетом типа волокна и источника излучения

Приложение

Источник излучения

Длина волны излучения, нм

Максимальная длина канала, м

Макси-мальные потери, дБ

 

 

 

62,5 мкм   |    50 мкм

62,5 мкм

50 мкм

10Base-FL

Светодиод

850

2000

12,5

7,8

100Base-FX

Светодиод

1300

2000

11

6,3

ATM 155

Светодиод

1300

2000

10

5,3

ATM 155

Лазер

850

100

7,2

7,2

ATM 622

Светодиод

1300

500

6,0

6,0

ATM 622

Лазер

850

300

4,0

4,0

1000Base-SX

Лазер

850

220-275(*) / 500-550 (*)

2,38

3,56

1000Base-LX

Лазер

1300

550

2,35

2,35

*- максимальная длина кабеля зависит от пропускной способнос­ти, минимальное значение приведено для кабеля с низкой пропу­скной способностью (160 МГцхкм)

 

3. Практический подход к полевому тестированию оптических каналов СКС и сетей FTTX

После того, как кабель проложен и полностью выполнена коммутация оптических волокон кабеля, наступает время тестирования. Каждую оптоволоконную кабельную систему  необходимо проверить на наличие обрыва или замкнутых участков. ВОЛС необходимо проверить на наличие сквозных потерь сигнала и, при необходимости, устранить неисправности. На ВОЛС внешней прокладки возможно дополнительное тестирование в отдельности мест сращивания оптоволоконного кабеля при помощи оптического рефлектометра. Это единственный способ, при помощи которого можно убедиться в исправности каждого из участков сети. Если вы являетесь пользователем сети, вы наверняка захотите проверить  оптический бюджет, так как именно этот показатель  подскажет вам, все ли в порядке с ВОЛС.

Вам понадобится несколько специальных инструментов и приспособлений для проведения тестирования волоконно-оптических кабелей.

Ø  Итак, приступаем к работе

Даже если вы квалифицированный инсталлятор (или монтажник), проверьте, не забыли ли вы о том, что:

1. Работать следует с исправным инструментом и тестовым оборудованием.

Вам понадобятся:

· Измеритель оптической мощности - тестовый прибор или диагностический комплект для проведения измерений оптических потерь с необходимыми для тестирования кабельной системы  разъёмами и адаптерами.

· Набор оптоволоконных кабелей для выполнения калибровки, того же типа, что и используемые в тестируемой кабельной системе, а так же соответствующие адаптеры, включая адаптеры смешанного типа, если в них есть необходимость.

· Прибор для определения повреждений оптоволокна, или прибор для локализации видимых неисправностей в ВОЛС.

· Очищающие средства – салфетки из нетканого полотна (или специальные без ворса) и чистый изопропиловый спирт.

· Оптический рефлектометр (OTDR) с измерительной катушкой и  оптическим шнуром для наружных работ.

Ø  Своим тестовым оборудованием нужно уметь пользоваться.

Прежде, чем приниматься за дело, соберите все свои инструменты и убедитесь, что они исправны, а вы и ваши монтажники знаете, как с ними обращаться. Трудно работать результативно, если с монтажной площадки приходится часто звонить по мобильному телефону производителю тестового оборудования и спрашивать его совета. Заранее опробуйте все оборудование в действии в офисе до того, как выехать на объект для проведения тестирования. Протестируйте с его помощью коммутационный оптический шнур, который будете использовать для калибровки методом тестирования оптической мощности излучения в одну сторону, чтобы убедиться, что все шнуры в порядке.  Если ваш измерительный прибор имеет функцию встроенной памяти для записи показаний, удостоверьтесь, что знаете, как ею пользоваться.  Если есть возможность настроить эту функцию в соответствии с личными установками, выясните это до начала производства работ на объекте. Таким образом, вы, возможно, сэкономите массу времени, а время на монтажном участке - это деньги!

Ø  Желательно заранее подробно изучить ту конфигурацию сети, которую вы тестируете.

Убедитесь, что у вас есть схема сети (ВОЛС) или кабельный журнал для каждого оптического волокна, которое нужно протестировать. До того, как приступить к работам на объекте, подготовьте сводную таблицу всех кабелей и оптических волокон и распечатайте себе экземпляр для записи результатов тестирования. Данные тестов можно записывать либо вручную, либо ваш измерительный прибор, при наличии в нем соответствующей функции, сохранит тестовые показания во встроенной памяти или на внешнюю карту памяти, откуда, по возвращении в офис, их можно будет распечатать или перенести в рабочий компьютер.

Не забывайте об индивидуальных средствах защиты! Пользуйтесь защитными очками. Берегите глаза при работе с источником оптического сигнала LASER или VCSEL.

Источники оптического сигнала тестового оборудования, как правило, слишком маломощные, чтобы вызвать какое-либо повреждение глаз. Тем не менее, все же стоит проверить оптические разъемы измерителем оптической мощности излучения до того, как заглядывать в них. Некоторые телекоммуникационные сети, использующие технологию спектрального уплотнения (DWDM) и системы кабельного телевидения (CATV) используют одномодовые источники сигнала, обладающие высокой мощностью, следовательно, они могут быть потенциально опасными.

Тестирование оптического волокна (ВОЛС) можно разделить на три основные этапа, каждый из которых мы рассмотрим в отдельности:

· Визуальная проверка целостности и тестирование коннекторов

· Тестирование на наличие потерь

· Тестирование сети

Рассмотрим первый этап: визуальную проверку целостности.

Проверка целостности позволяет убедиться, что оптические волокна ВОЛС не повреждены и проследить соединение оптических волокон от одного до другого через большое количество промежуточных соединений. Для этой цели рекомендуется использовать прибор видимого излучения: «оптоволоконный трассировщик» или  "портативный прибор для визуального обнаружения неисправностей". Монтажники очень часто называют его просто «фонариком». Действительно, выглядит он как  карманный фонарик или похожий на ручку инструмент со светодиодом или полупроводниковым лазером, который подсоединяется к оптоволоконному разъему. Для тестирования подключите кабель к устройству визуального обнаружения неисправностей и посмотрите на другой конец кабеля, видимое излучение должно проходить вдоль всей сердцевины оптоволокна. Если этого нет, проверьте еще раз все промежуточные соединения для обнаружения повреждённого участка кабеля.

Одним из способов  сэкономить время и деньги - проведение тестирования оптоволоконного кабеля на катушке (бобине) до момента его прокладки.   Здесь, как правило, выполняется проверка целостности оптических волокон  после транспортировки катушки на место будущей установки. Внимательно ищите видимые следы повреждений. Это могут быть поцарапанные или сломанные ребра катушки, перегибы кабеля и т.п. В процессе тестирования возникает необходимость сопряжения прибора визуального обнаружения неисправности с тестируемым кабелем. Это возможно при помощи адаптера голого волокна. Подключая кабели к коммутационным панелям, используйте прибор визуального обнаружения неисправности, чтобы выбрать для каждого соединения только два волокна

Ø  Визуальное определение места повреждения.

В мощной модификации прибора визуального обнаружения неисправности,  который так же помогает находить повреждения, используется лазер. Красное излучение лазера обладает достаточной мощностью, чтобы показать места повреждения волокна или большие потери в коннекторах. Фактически, вы можете увидеть затухание яркого красного излучения даже через большое количество жёлтых или оранжевых защитных оболочек  оптоволоконного симплексного кабеля, за исключением чёрных или серых оболочек. Можно использовать этот прибор для оптимизации процесса механического сращивания волокон или в процессе оконцевания кабеля методом сращивания с предварительной полировкой. На самом деле, о возможности высокопродуктивного соединения волокон одним из выше указанных способов без использования «оптоволоконного трассировщика», даже не думайте.

Ø  Визуальная проверка оптических коннекторов.

Оптоволоконные микроскопы используются для проверки качества оконцевания оптических кабелей с помощью оптических разъемов и для диагностики возможных проблем. При качественно выполненном соединении конец оптического волокна будет отполирован и проверка волокна не покажет никаких признаков возможных трещин, сколов или мест, где волокно будет вылезать из керамического наконечника, или будет не доходить до его края.

Кратность увеличения микроскопа при проверке оптических разъемов может варьировать в пределах от 100 до 400 раз, но рекомендуется использовать среднее увеличение. Лучшие микроскопы позволяют нам проверить коннектор под разными углами, либо с помощью наклона коннектора, либо при помощи изменения угла подсветки, что помогает получить чёткую картину происходящего. Проверьте, чтобы микроскоп был снабжён простым в использовании адаптером, с помощью которого можно подсоединить микроскоп к коннектор.

И не забудьте заранее удостовериться, что в оптическом кабеле отсутствует излучение, перед тем как выполнить визуальную проверку посредством микроскопа – это защитит ваши глаза!

Хорошие результата проверки целостности оптических волокон и оптических шнуров дает простой в использовании прибор VFL (Visual Fault Locator) – прибор визуального обнаружения неисправностей в оптоволокне. Его иногда называют «оптическим фонариком». Длина волны оптического излучения VFL представляет собой видимый человеческому глазу спектр излучения, воспринимаемый, как красный свет. Нажав кнопку подсветки оптоволокна на приборе, можно определить неисправность по преломленному оптическому  излучению, выходящему за пределы оптической жилы в оптическую оболочку. В месте излома оптоволокна или обрыва, свечение в виде красного цвета будет очень заметным даже невооруженным глазом.

Рис. 20 VFL (Visual Fault Locator) – прибор визуального обнаружения неисправностей в оптоволокне

Ø  Оптическая мощность – мощность или потери («абсолютное» против «относительного»)

Практически каждое измерение в оптоволоконной технике связано с понятием оптической мощности. Мощность оптического сигнала на выходе источника или сигнала на приёмной стороне является «абсолютной»  величиной, поскольку измеряется фактическая мощность сигнала. Потери оптического сигнала являются «относительной» величиной, так как в этом случае измеряется разница между мощностью потерь в компонентах оптического канала: кабеле или коннекторе, и мощностью, которая передаётся через сам кабель. Эта разница называется оптическими потерями и определяет производительность оптоволокна, коннекторов, сплайсов и т.д.

Ø  Измерение оптической мощности излучения

Мощность излучения в оптоволоконных системах играет ту же роль, что и напряжение в электрических цепях, то есть, лежит в основе их работы. Важно, чтобы мощность излучения была достаточной, но не избыточной и чрезмерной. Если мощности не хватает, то оптический приемник не сможет распознать сигнал на фоне шумов и помех. Слишком большая оптическая мощность перегружает приёмник и также вызывает ошибки передачи.

Для измерения мощности оптического излучения потребуется только измеритель мощности (большинство моделей укомплектовано адаптером, который совместим с тестируемым оптическим разъемом).. Помните, что параметры измерения оптической мощности в приборе должны быть откалиброваны: требуемый диапазон (обычно измеряемый в дБм, в некоторых случаях в микроваттах), но не в децибелах дБ, так как этот параметр является относительным и применяется только для тестирования потерь сигнала на заданной длине волны, соответствующей используемому источнику оптического сигнала. Следуйте инструкциям по настройке и эксплуатации, приложенным к тестовому оборудованию (и не затягивайте с калибровкой и испытанием оборудования до момента, когда уже нужно приступать к работам на объекте)!

Для определения оптической мощности подсоедините ваттметр к тому волокну по которому передается исходный сигнал, который вы хотите измерить. Тестирование оптической мощности излучения на входе можно произвести на приёмной стороне при помощи эталонного оптического шнура (проверенного и исправного), подключенного к оптическому передатчику, выступающему в качестве "источника оптического сигнала". Включите передатчик/источник сигнала и откалибруйте мощность, которую фиксирует ваттметр. Сравните полученное значение показателя со значением, указанным в спецификации для данной оптической системы и убедитесь, что эта мощность достаточна, но не превышает необходимого уровня.

Хорошие результаты на практике дает применение измерительных тестеров-квалификаторов локальных вычислительных сетей, совмещающих одновременно сразу несколько функций. Так, можно использовать измерительный тестер-квалификатор SIGNALTEK II FO производства IDEAL Industries (CША), позволяющий выполнить измерения как оптической мощности излучения для многомодового и одномодового волокон в оптическом кабеле на длинах волн 850 нм и 13ХХ нм, так и проверить прохождение сигнала в медножильной ЛВС по протоколу 1000BASE-T на гигабитной скорости.

Рис. 21 Тестирование оптической мощности излучения тестером IDEAL SIGNALTEK II FO

Ø  Тестирование потерь оптического сигнала

Тестирование потерь оптического сигнала заключается в выявлении разницы между уровнем мощности, поступающим в оптоволокно со стороны передатчика и уровнем на выходе из волокна на приёмной стороне. Для  определения потерь измеряют суммарные потери оптической мощности в кабеле, включая оптические разъемы, места сращивания и т.д. при помощи источника оптического сигнала и измерителя оптической мощности (ваттметра), подсоединив тестируемый кабель к эталонному образцу.

Дополнительно, кроме ваттметра нам понадобится тестовый источник оптического излучения. Источник должен соответствовать типу тестируемого оптического волокна (светодиод или лазер) и  требуемой длине волны (850, 1300, 1310 и 1550 нм). Будьте внимательны, читайте инструкцию, прилагаемую к тестовому оборудованию!

Дополнительно, в зависимости от теста, который вы собираетесь выполнить, необходимо иметь один или два эталонных оптических коммутационных шнура. От их качества будет напрямую зависеть точность проведенных вами измерений. Всегда проверяйте эталонные оптические коммутационные шнуры до момента начала тестирования при помощи однонаправленного измерения потерь, описанного далее, чтобы убедиться в их абсолютной исправности. 

Далее, необходимо выставить эталонную мощность оптического сигнала для измерения потерь, откалибровав прибор на значение 0 дБм. Без правильно установленной эталонной мощности, проведение измерений потерь сигнала  не представляется возможным!

Выполните очистку оптических разъемов изопропиловым спиртом и проконтролируйте их чистоту при помощи оптического микроскопа или оптическим видео зондом. Согласно ISO/IEC 14763-3, использование оптических разъемов с загрязнением поверхности более 25% (даже если эти разъемы используются впервые) запрещено. Оптические разъемы необходимо очистить от пыли и грязи, а если это не поможет, заполировать до их полной очистки. После этого настройте измерительное оборудование следующим образом.

Приведите в действие источник оптического излучения и выберите длину волны, которая подходит для тестирования данного оптоволокна. Включите измеритель оптической мощности, выберите размерность "дБм" или "дБ", диапазон и требуемую длину волны. Измерьте показание уровня мощности. Это значение будет эталонным показателем мощности для всех производимых вами измерений. Если ваш измеритель оптической мощности имеет функцию "обнуления", установите это показание прибора за «эталонный ноль». Теперь повторное включение/выключение  измерительного прибора недопустимо, так как это собьет уже установленные эталонные значения и всю описанную процедуру калибровки придется повторять заново.

Иногда в справочной литературе и руководствах по эксплуатации приводится способ настройки эталонного уровня мощности для определения потерь оптического сигнала по двум кабелям – пусковому и тестируемому, подключаемым к измерительному адаптеру или даже по трем эталонным кабелям. Этот способ приемлем для некоторых тестов и, более того, обязателен, если оптические разъемы на вашем тестовом оборудовании не соответствуют разъемам на тестируемой кабельной системе. Полученные, таким образом, эталонные значения будут занижены на уровень потерь эталонных кабелей при последующем обнулении потерь (когда вы устанавливаете потери в 0 дБ). Кроме того, если в пусковом кабеле или приемном есть дефекты, использование обоих кабелей для определения эталонных значений мощности скроет этот факт. Следовательно, вы можете начать тестирование с неисправными пусковыми кабелями, что исказит результаты всех производимых вами измерений. Спецификация EIA/TIA 568 C потребует применения одного эталонного кабеля, в то время как OFSTP-14 допускает оба вышеперечисленных способа.

Ø  Тестирование на наличие потерь сигнала

Уровень потерь сигнала измеряют двумя методами: односторонним и двусторонним измерением потерь. Для измерения методом одностороннего измерения потерь используется только пусковой кабель, в то время, как  метод двухстороннего измерения потерь дополнен ещё и приемным кабелем, который подключается к измерителю на приемной стороне.

При работе по методу одностороннего измерения, тестируемый кабель  подключают к эталонному пусковому кабелю и прибором измеряют мощность сигнала на его приемном конце. Таким образом, выясняют потери сигнала в оптическом разъеме, который сопряжён с пусковым кабелем (первом оптическом разъеме после прибора в схеме измерения). Данный  способ описан в FOTP-171. Для проверки коннектора на другом конце схемы просто подключите кабель с другой стороны.

Тестирование  по методу двустороннего измерения потерь предполагает, что тестируемый кабель подключается с обеих сторон схемы измерений к двум эталонным кабелям, один из которых подключен к источнику сигнала, а другой – к измерительному прибору. Так определяется уровень потерь сигнала в оптических разъемах на обоих концах оптического кабеля и, дополнительно, потери в кабеле или кабелях, расположенных между ними. Этот способ отмечен в OFSTP-14 в качестве основного теста на измерение потерь сигнала в уже установленных кабельных системах.

Ø  Какое затухание вы должны получить при тестировании кабеля?

Несмотря на то, что в этом вопросе трудно делать общие рекомендации, вот некоторые из них:

  • На каждом коннекторе потеря мощности сигнала может составлять  0.5 дБ (максимум - 0.75 дБ).
  • На каждом механическом сростке не более  0.3 дБ.
  • Для многомодового волокна, потеря сигнала составляет 3,5 дБ/км, при длине волны 850 нм, и 1,5 дБ/км при длине волны 1300 нм.
  • Для одномодового волокна потеря сигнала составляет 1 дБ/км при  длине волны 1310 нм и 1550 нм (оптоволокно G.652 A и B) и 0.4 дБ/км на километр (оптоволокно G.652 С и D).

Формально, потери  на участке ВОЛС приблизительно можно вычислить по следующей формуле:

(0.5 дБ X число оптических разъемов) + (0.2 дБ x количество сростков) + затухание сигнала в оптическом кабеле на данной длине волны х длину кабеля в (км).

Ø  Советы по устранению неисправностей

Если вы обнаружили большие потери сигнала в кабеле, обязательно переподключите его в противоположном направлении и проверьте его по методу одностороннего измерения потерь. Поскольку в этом методе потери измеряются только в оптическом разъеме на одном конце кабеля, вы самостоятельно сможете локализовать местонахождение проблемного оптического разъема. Это будет оптический разъем кабеля, подключенный к  пусковому кабелю, при помощи которого выполняется тестирование.

Причина возникновения больших потерь, выявленных с помощью метода двустороннего измерения потерь, должна быть локализована посредством  повторного тестирования по методу одностороннего измерения потерь с дальнейшим подключением кабеля в обратном направлении для определения, является ли оптический разъем на конце кабеля источником этих потерь. Если потери сигнала будут такими же, вам необходимо проверить каждый сегмент кабеля в отдельности, или использовать оптический рефлектометр.

Если вы не можете определить наличие оптического излечения в кабеле (в случае очень больших потерь) при проверке кабеля с помощью оптического трассировщика, то вероятнее всего причиной потерь является один из оптических разъемов. В этой ситуации у вас всего несколько вариантов возможных действий. Наилучшим решением будет локализация  проблемного участка кабеля и удаление оптического разъема на одном из его концов. Скорее всего, выбранный вами оптический разъем и был главным источником больших потерь сигнала (ваши шансы 50 на 50).

Ø  Тестирование при помощи оптического рефлектометра

Как было нами сказано ранее, оптические рефлектометры используются для  проверки состояния оптических кабелей и каналов ВОЛС в месте сращивания оптоволокна. Рефлектометры с успехом могут применяться  для поиска неисправностей ВОЛС.  Несколько слов уделим тому, каким образом рефлектометр может применяться при тестировании и устранении неисправностей кабеля.

Описание: IDEAL OTDR normal

Рис. 22 Типичная рефлектограмма

На экране рефлектометра отображается много различной информации. Угол наклона рефлектограммы показывает степень затухания волокна и может быть  откалиброван на рефлектометре в дБ/км. Для измерения затухания в оптическом волокне, нам потребуется кабель достаточно большой длины без искажений сигнала на обоих его концах для того, чтобы избежать перегрузки приёмника оптического рефлектометра, вызванного большим отражением сигнала. Если оптическое волокно обладает нелинейностью на одном из концов, особенно рядом с «событием», вызывающим отражение, пропустите эту секцию волокна при подсчете потерь.

Оптические разъемы и места сращивания в терминологии рефлектометрии называются «событиями». Они оба показывают потерю сигнала, но оптические разъемы и механические соединители (сплайсы) порождают отражающий всплеск.  Следовательно, вы можете отличить их от мест сварки оптических волокон, которые этого всплеска не вызывают. Кроме того, высота такого всплеска показывает величину отражения оптического сигнала во время данного «события», за исключением случаев, когда оно настолько велико, что перегружает приёмник рефлектометра.

Рис. 23 Динамический диапазон рефлектометра и типичные события

Также оптические рефлектометры могут обнаруживать дефекты кабеля до момента или в процессе инсталляции. Если волокно было повреждено,  то его длина, определённая с помощью рефлектометра, окажется существенно меньше всей длины оптического кабеля, а место скола волокна будет видно на рефлектограмме как место сращивания с высокими потерями. Если на кабель была оказана чрезмерная нагрузка, вызванная превышением допустимого радиуса изгиба или просто недопустимым изгибом, то рефлектометр определит это событие просто как кабельный сросток в недопустимом месте.

Ø  Ограничения на применение  рефлектометрии

Ограниченная способность рефлектометра по дальности измерений, делает его использование весьма затруднительным в локальных вычислительных сетях (ЛВС) или структурированных кабельных системах (СКС), где оптические кабели обычно имеют длину в несколько сотен метров. Рефлектометр имеет ограниченное функционирование при работе с кабелями коротких длин в ЛВС и с большой вероятностью покажет «призрачный» сигнал (сигнал многократного отражения), отраженный от оптического разъема ближнего конца, чем способен достаточно просто ввести пользователя рефлектометра в недоумение.

Существует несколько правил, которые сделают применение рефлектометра более простым и понятным. Всегда используйте длинный пусковой кабель, который позволит рефлектометру стабилизироваться после стартового импульса. Этот кабель является эталонным для тестирования оптоволоконного участка после первого оптического разъема, который необходимо проверить. Для лучшего анализа, всегда начинайте проверку рефлектометром с установки наименьшей длительности импульса и  используйте пусковой кабель (нормализующую катушку), длина которого превышает длину оптического кабеля, который вы тестируете, как минимум, в два раза. Сделайте стартовую трассировку и вы увидите, какие параметры необходимо изменить, чтобы получить хорошие результаты.

Рис. 24 Нормализующая катушка

Самое главное, никогда не идите по легкому пути, просто подсоединив рефлектометр к измеряемой ВОЛС и нажав кнопку «автоматическое тестирование»)! Подобные случаи, зачастую, могут привести к поломке оборудования и потере значительной части финансовых средств. Если вы самостоятельно выполнили установку должным образом, то сможете попробовать запустить автоматическое тестирование и посмотреть, дает ли рефлектометр адекватные  результаты, но никогда не используйте его «вслепую».

Ø  Поиск и определение неисправностей

Возможно, что в какой-то момент потребуется выявить и устранить неполадки в структурированной кабельной системе. Если вы используете критически важное сетевое приложение или ваша сеть состоит из очень большого числа кабелей, надо быть готовым сделать это самостоятельно. Если вы планируете заняться поиском неисправностей самостоятельно, то имейте под рукой исправное и готовое к работе необходимое оборудование: дополнительные кабели, механические соединители оптических волокон (сплайсы), оптические разъемы для быстрого оконцевания оптических волокон и т.д., а также измерительное оборудование и, конечно, надежного помощника, который умеет с ним обращаться.

Невозможно преувеличить важность наличия хорошей кабельной  документации на СКС. Если не иметь представления, куда идут кабели, какова их длина и результаты тестирования оптической мощности излучения, то работа может застопориться с самого начала. Также вам понадобятся инструменты для диагностики неисправностей и их ликвидации, оборудование, включая портативный сварочный аппарат для сварки оптических волокон или несколько механических сплайсов, а также запасные кабели. Другими словами, когда вы прокладываете оптический кабель, поберегите остатки для восстановительных работ!

Первое, что следует выяснить – где именно возникла проблема: в оптическом кабеле или в оборудовании, использующем эти кабели. При помощи простого измерителя оптической мощности излучения  протестируйте источник на возможность передачи сигнала, а приёмник – на возможность его приема. С помощью оптического трассировщика проверьте целостность оптоволокна. Если неполадки обнаружатся в кабельной системе, то для их дальнейшей локализации используйте оптический рефлектор.

Возможно, что указанные нами методы и средства смогут быть вам полезными в нелегком труде по эксплуатации ВОЛС, СКС и ЛВС. Безусловно, все вышеперечисленное не является панацеей в вопросе ликвидации всех возможных неисправностей в оптических кабельных системах. Но, практика покажет, ведь она – критерий истины!

 

Выводы

Чрезвычайная близость спецификаций Gigabit Ethernet к требованиям стандартов TIA и ISO может служить дополнительным аргу­ментом в пользу тестирования ВОК на основе многомодового ОВ с использованием VCSEL-лазеров. Например, пользователь может за­казать прокладку оптимизиро­ванного под лазер волокна для того, чтобы в дальнейшем мож­но было перейти на стандарт 1 или 10 Gigabit Ethernet. Если ка­налы передачи данных будут сертифицированы на соответ­ствие стандартам ТIA и ISO с ис­пользованием лазерных источ­ников излучения VCSEL, полу­ченные данные не будут соот­ветствовать наихудшим услови­ям эксплуатации. Однако пер­воначальная установка обору­дования 100 Мбит/с в такие ли­нии не вызовет никаких проб­лем, так как допустимый уро­вень потерь в 100-мегабитных системах существенно выше. Гораздо важнее при прокладке сети будет убедиться в том, что в будущем сеть можно будет перевести на стандарт Gigabit Ethernet, и что в сети выполнены все требования этого стандарта, предъявляемые к длине кабель­ного соединения и величине затухания.